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DIGITAL FILTERS FOR USE IN POST-PROCESSING FORECAST FIELDS

1. Introduction

The growth of noise, that is high wave number variability, in the course
of the numerical integration of limited-area forecasts has been discussed in-
previous papers 11,2]. As long as the integration is; computationally- stable,
the noise is not overly significant except when it detracts-from the appearance
of the post-processed charts. To avoid confusion in the interpretation of such
charts, it is desirable to suppress the noise components while leaving the
meteorological components relatively unaltered.

In principle, one may utilize Fourier analysis to accomplish the desired
smoothing. More efficient methods exist for accomplishing the desired end to
a reasonable degree of accuracy. Shuman [3] and, more recently, Shapiro 14]
have discussed the construction of cascaded linear digital filters to meet
prescribed specifications. The approach used in our filter design differs
somewhat from theirs and documentation seems warranted.

2. Abroad-band, low-pass filter

Suppose that in one-dimension, a set of data is sampled at equal intervals
Ax. Consider that the data are available at L+l points. This situation is
typical of that encountered in post-processing. The data will generally be such
that the end-point values are unequal and the mean value is non-zero. A unique
Fourier representation of such data is non-existent. To perform a Fouri'er
analysis, the data must be extended by some (arbitrary) rule to be periodic or
of infinite extent.

We may proceed by a somewhat different course and simply define a linear
operation by which the given data-are to be transformed. Some idea of the
effect of the linear operator may be gleaned by analysis of its effect upon
periodic functions. We reserve the right to judge the performance of the
operator by consideration of its effect on realistic data.

Let's consider the datum at gridpoint jAx (O j L) to be
denoted by dj and define the linear transformation

M

yj = wod j + ~ wm(dj+m + dj.m) (1)

in which the weights, wm, are real numbers. The operator can only be applied
for

M < j < (L-M) (2)
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Now, suppose that

dj = Dkeikj (x

where Dk is a complex constant and k is a real number. From sampling theory,
one knows that the value of k is bounded between ±r/Ax. The term given in
(3) is one element in a complex Fourier representation of the data.

Application of (1) gives

M
yj =d [wo + 2wm cos(kmAx)] (4)
J j 0 ml

Since the quantity in brackets is a real number, we may note that the
phase of dj is unaffected. The "response" of the linear operator is defined
as the value of the bracketed term; it is a function of kAx, M and the wm-
If we define

a = kAx (5)

we may note the trigonometric identity",

cos m = 2 cos (m-l)a cos a - cos (m-2)a (6)

If we further define

= cos a (7)

one may show that (4) is a polynomial of degree M in C. By specification of
the wm's, one may cause that polynomial to pass through any M+l points at
prescribed values of C. Thus we see that a trade-off is possible between
the length of the data set which may be transformed and the constraints to
which the response may be subjected. It should be noted that the "cascaded,
elemental filters" discussed by Shuman and Shapiro are subject to the same
trade-off.

Let's now consider the design criteria used for our broad-band, low-
pass filter [cf. ref. 1]. We require the response, R, to be unity for %=1
and vanish for C=-1. We further require that ==O, at =+±1. These four
conditions require that M=3. Thus, the filtered field will be available
only from j=3 to j=L-3. It so happens that the boundary conditions used in
the integration of the LFM [5] are artificial and consequently, that close
to the boundaries, the forecast fields have little validity.

.From eq. (4) with M=3, one gets with the use of (6) and (7),

R = (w0-2w2) + (2wl-6w3)i + 4w2 C
2 + 8w3 C

3 (8)
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If we define

a = w-2w 2

b5 = 2wl-6w 3

c = 4w2

d = 8w3

then the conditions imposed on R

R = 1, C = l : a + b

R = 0, C =

DR
- = O. C = 1 :

DR = 0, C = -1:

2C

may be expressed:

+ c + d = 1

-1: a- b + c - d = 0

b + 2c + 3d

b - 2c + 3d

= 0

The solution of (10) is

a = .5

b = .75

c = 0.

d = -.25

R = .5 + .75C - .25C3

The weights, Wm, may then be determined from (9) and (11):

W2 = 02

w = -1/32

w 1 = 9/32

wo = 16/32

We will discuss details of the response later on.
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0 3. A recursive, narrow band filter

The filter presented above does not appreciably suppress that portion
of the spectrum about ~=0 (the 4Ax wave). In some of the LFM fields, post-
processed with this filter, an excessive residue of noise seems to be present
with a wave length near 4Ax. To suppress that wave, we have formulated a
"recursive filter." The description of the theoretical basis for its design
would take us off on a tangential course and will therefore not be attempted
here*.

Using the same notation as earlier, the "recursive filter" may be
written,

(1 + (1+e)2)
y = (dj + dj_2- Yj_2) -)2(l)2

j j-2 j -2) (±;(l+:)~ Z (14

In practice, we apply this filter from right to left (j increasing) and then
a second time in the opposite direction (making the obvious modifications in
indexing). The mean of the two passes is taken as the final value of yj.
Whenever a value of d or y is required outside the domain (o:jeL), it is
taken to be equal to the mean value. of d or zero respectively. By varying
the value of £, the filter's response can be made s:harper (reducing a), but
with less damping of the 4Ax wave, or broader (increasing s), with greater
damping of the 4Ax wave. The filter's response is theoretically symmetric
about i=0. It has been normalized to yield unity at =+±1. -There is a wavy

character, "ripple", to the response.

In Table 1, we present the response calculated for various values of
e as a function of harmonic index, k, for trigonometric fields defined on a
grid of 52 intervals. The harmonic index, 13, corresponds to that of a

wave of length four grid intervals.

The calculation was made by construction of a data set with a
particular wave length (trigonometric functions). The recursive filter was
applied. The reduction in the amplitude, i.e. the response, is not uniform
over the entire field. The tabulated values were read near the midpoint of
the field - at gridpoint 29 - and are relative minima. The symmetry of the
response about k, the harmonic index, equal to 13 was not checked.

*The theory- was presented in an ESSA sponsored short--conrse in time-series
analysis taught by Dr. Flinn.
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k 0.01 .02 .03 .04 .05 .06 .07 .08 .09 0.1

1 .991 .983 .976 .970 .964 .959 .954 .950 .946 .942

2 .999 .998 .995 .992 .988 .984 .980 .976 .972 .967

3 .991 .983 .976 .970 .964 .959 .954 .950 .946 .942

4 .999 .998 .995 .992 .988 .984 .980 .976 .971 .967

5 .991 .983 .976 .969 .964 .959 .954 .950 .945 .941

6 .999 .998 .995 .992 .988 .984 .979 .975 .970 .965

7 .991 .983 .976 .969 .964 .958 .953 .949 .944 .940

8 .999 .998 .994 .991 .987 .982 .977 .972 .967 .962

9 .991 .983 .976 .969 .963 .957 .952 .947 .942 .937

10 .999 .996 .993 .988 .983 .977 .970 .964 .957 .950

11 .991 .982 .975 .967 .960 .952 .945 .937 .929 .920

12 .996 .986 .972 .953 .933 .911 .887 .863 .839 .815

13 .871 .760 .665 .584 .514 .453 .400 .355 .315 .281

Table 1:

Response of recursive filter estimated at grtd point 29 for various
values of s. and the- harmonic index R; k=13 corresponds to the four grid
interval wave. The response is theoretically symmetric about k=13.

4. Two-dimensional application

The use of the filters in two dimensions poses no' essential problem
(cf. [3]),. The broad-band, low-pass filter may be written as a 49-point
stencil, or passed in both coordinate directions as programming ease suggests.
The recursive filter does not lend itself to a stencil application. Other
schemes for suppressing the 4Ax-wave might be developed along the line used
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in Section 2, but they will generally- require a rather large stencil.

In combined application of the two filters presented here, it seems
best to first apply the recursive scheme, since no data points are lost.

5. Response of combined application

It is possible that these filters will find application in the LFM
post-processor package. At that time, some specific examples-may he worked
out. For the moment, we must be content with a somewhat theoretical estimate
of the response. For this purpose, Table 2 has been constructed. Using
L=52, the value of cos(2im/L)---- ii -- was evaluated for m=l,2,...,2 6. The
response, R1, was calculated from eq. 12. The estimate of the recursive
filter's response given in Table 1 for s=.l was tabulated as R2. The
response R3 of the combination of the two linear operators was calculated
by multiplication of R1 and R2,

s=. 1

Wavelength/Ax

52

R

.999
.999

R R
2 3

.942

W.L./Ax R

.999 3.7

R1 2
.422 .815

.965 3.5

.998 .942

.991 .967

.977 .941

.956 .965

.940 3.3

.958 3.1

.919 2.9

.922 2.7

.252 .950

.184 .937

.124 .962

.079 .940 .074

.866 2.6

.962 .843 2.5

.764 2.4

.711 2.3

.920 .613 2.2

.471 2.1

.009 .967

.002

.002

.001

.942

.967

.942 .001

.140 2.0 .0 1. 0.

: T.~5ie.'2;- 

The theoretical response of the. combination of the two filters
presented in the text.
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26 .998 .967

17.3

13

10.4

R
3

.345

.335 .920 .308

8.7

7.4 .921

.239

.172

.119

6.5

.940

.876

.045

.023

5.8

5.2

4.7

4.3

.937

.950

.965

.941

.816

.748

.665

.578

.043

.022

4.0

.815

.5

.009

.002

.002

.281
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